Journal of Organometallic Chemistry, 229 (1982) 169–177 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ÜBERGANGSMETALL--CARBIN-KOMPLEXE

LXVI *. CYCLOPROPYLCARBEN- UND -CARBINKOMPLEXE VON CHROM UND WOLFRAM SOWIE SYNTHESE UND RÖNTGENSTRUKTURANALYSE EINES NEUARTIGEN CARBINKOMPLEXTYPS: trans-(µ-BROMO-PENTACARBONYLCHROM)-TETRACARBONYL-(CYCLOPROPYLCARBIN)CHROM

ERNST OTTO FISCHER *, NGOC HOA TRAN-HUY und DIETMAR NEUGEBAUER

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching (B.R.D.)

(Eingegangen den 30. November 1981)

Summary

Hexacarbonyl-chromium and -tungsten react with cyclopropyllithium to yield acylmetallate complexes, from which, by subsequent alkylation with triethyloxonium tetrafluoroborate the corresponding pentacarbonyl[cyclopropyl(ethoxy)carbene] complexes (I, II) are obtained.

The reaction of the complexes I and II with boron tribromide in methylene chloride at low temperatures yields *trans*-bromotetracarbonyl(cyclopropyl-carbyne)-chromium and -tungsten (III, IV). Complex I reacts with boron tribromide to give *trans*-(μ -bromopentacarbonylchromium)tetracarbonyl(cyclopropylcarbyne)chromium (V).

The reaction conditions and the results of spectroscopic measurements of I-V, and the X-ray structure of V are reported.

Zusammenfassung

Hexacarbonylchrom und -wolfram reagieren mit Cyclopropyllithium zu Acylmetallat-Komplexen, die bei nachfolgender Alkylierung mit Triethyloxoniumtetrafluoroborat in die entsprechenden Pentacarbonyl[cyclopropyl(ethoxy)carben]-Komplexe (I, II) übergehen.

Die Umsetzung dieser Komplexe mit Bortribromid in Methylenchlorid bei

* LXV. Mitteilung siehe Ref. 1.

0022-328X/82/0000-0000/\$02.75 © 198

tiefen Temperaturen führt zu *trans*-Bromotetracarbonyl(cyclopropylcarbin)chrom und -wolfram (III, IV). Zusätzlich erhält man bei der Reaktion von Komplex I mit Bortribromid *trans*-(μ -Bromo-pentacarbonylchrom)-tetracarbonyl(cyclopropylcarbin)chrom (V).

Die Darstellungsbedingungen und die Ergebnisse der spektroskopischen Untersuchungen von I–V, sowie die Röntgenstrukturanalyse von V werden mitgeteilt.

Präparative Ergebnisse

Durch Umsetzung von $Cr(CO)_6$ oder $W(CO)_6$ mit Cyclopropyllithium [2] in Ether und anschliessende Alkylierung der gebildeten Acylmetallat-Komplexe mit [Et₃O][BF₄]erhält man Pentacarbonyl[cyclopropyl(ethoxy)carben]chrom bzw. -wolfram.

Die diamagnetischen Komplexe werden aus Pentan umkristallisiert und fallen in Form gelber, nur wenig luft- und feuchtigkeitsempfindlicher Kristalle an, die sich in Pentan, Ether und Methylenchlorid sehr gut lösen. Die Carbenkomplexe I und II reagieren mit Bortribromid in Methylenchlorid bei -25° C unter Kohlenmonoxidentwicklung zu *trans*-Bromotetracarbonyl(cyclopropylcarbin)chrom bzw. -wolfram.

Die Reinigung der Komplexe III und IV erfolgt durch Chromatographie an Kieselgel mit $CH_2Cl_2/Pentan$. Nach Umkristallisation aus $CH_2Cl_2/Pentan$ fallen die diamagnetischen Substanzen als Kristalle von helloranger (III) bzw. beiger (IV) Farbe an. Sie sind sowohl im festen Zustand als auch in Lösung sehr feuchtigkeits-, luft- und temperaturempfindlich. Während Verbindung IV als Hauptprodukt der Reaktion von II mit BBr₃ erhalten wird, entsteht bei der analogen Umsetzung von I der erwartete Komplex III nur in geringer Ausbeute, wohingegen als Hauptprodukt der neuartige bromverbrückte Carbinkomplex $trans-(\mu-Br(CO)_5Cr)(CO)_4CrC(C_3H_5)$ (V) gebildet wird.

Wie gezeigt werden konnte, ist die Verbindung V hierbei nicht als Produkt

(1) 不可能是不能要要求的。

einer Parallelreaktion, sondern als Folgeprodukt der thermischen Zersetzung des Carbin-Komplexes III aufzufassen, aus dem V durch Auflösen in Methylenchlorid bei ---30°C, anschliessenden Zusatz von wenig Pentan und nachfolgende langsame Abkühlung auf ----78°C in Form roter Kristalle erhältlich ist.

Im Vergleich zur hellorange gefärbten Verbindung III zeichnet sich V durch deutlich geringere Thermolabilität aus. V ist in unpolaren Solventien nur mässig, in polaren Lösungsmitteln dagegen gut löslich.

Spektroskopische Untersuchungen

IR-Spektren

Sowohl die Spektren der Carben- als auch der Carbinkomplexe zeigen das typische Bandenmuster quasioktaedrischer Komplexe mit Pentacarbonyl- bzw. *trans*-Tetracarbonylstruktur (Tabellen 1 und 2).

TABELLE 1

ν(CO)-ABSORPTIONEN DER CARBENKOMPLEXE I UND II IN HEXAN (in cm⁻¹)

	м	A12	B ₁	A ¹ ₁	E	
I II	Cr W	2065 2075	1985 1982	1960 1955	1945 1945	_

TABELLE 2

 ν (CO)-ABSORPTIONEN DER CARBINKOMPLEXE III, IV UND V IN CH₂Cl₂ (in cm⁻¹)

·	м	ν(CO)				
ш	Cr	2130	2040			
IV	w	2125	2035			
v	Cr .	2140	2045	1985		

TABELLE 3

¹H-NMR-SPEKTREN DER KOMPLEXE I–V IN CD₂Cl₂ (Chemische Verschiebungen bez. auf δ (CHDCl₂) 5.4 ppm, Multiplizitäten und Intensitäten in ())

	(OCH ₂) (CH ₃)	(^H \))	(← ^H ,)
I	5.0(Q, 2) 1.5(T, 3)	3.6(M, 1)	1.4; 1.2(M, 4)
II .	4.8(Q, 2) 1.6(T, 3)	3.6(M, 1)	1.3; 1.1(M, 4)
m		2.0(M, 1)	1.1(M, 4)
IV		1.4(M, 1)	0.9(M, 4)
v		2.15(M, 4)	1.28(M, 1)

¹H-NMR-Spektren

Die chemischen Verschiebungen, Signalintensitäten und -multiplizitäten bestätigen die Strukturen der Verbindungen I---V (Tabelle 3).

¹³C-NMR-Spektren

In den ¹³C-NMR-Spektren interessieren vor allem die Signale der Carben- und Carbinkohlenstoffatome. Beim Vergleich der erhaltenen Messdaten mit denjenigen anderer Alkyl- und Arylcarbenkomplexe ergibt sich, dass die chemische Verschiebung des C_{Carben} in I im Bereich von Arylcarbenen liegt. Dies sollte eine Folge der guten Donoreigenschaften des Cyclopropylliganden sein. Im Gegensatz dazu entspricht die chemische Verschiebung des Carbinkohlenstoffs in III dem Wert des Methylcarbinkomplexes Br(CO)₄CrCCH₃.

Bezogen auf das α -C-Atom des Cyclopropylrings erweisen sich sowohl die Carben- als auch die Carbinfunktion als starke Akzeptorgruppen [3].

In den Tabellen 4 und 5 sind die chemischen Verschiebungen von $(CO)_{5}$ CrC- $(C_{6}H_{5})(OCH_{3})$ (VI) und $(CO)_{5}$ CrC $(CH_{3})(OCH_{3})$ (VII) [4] bzw. Br $(CO)_{4}$ -CrCC₆H₅ (VIII) und Br $(CO)_{4}$ CrCCH₃ (IX) [5] zum Vergleich aufgeführt.

TABELLE 4

¹³C-NMR-SPEKTREN VON I, VI UND VII IN CD_2Cl_2 (δ (ppm) bez. auf δ (CD_2Cl_2) 54.2 ppm)

	C _{Carben}	CO _{trans}	CO _{cis}	OCH2CH3	OCH2CH3	\geq	\times^{c}_{c}
I	350.7	224.8	217.7	77.6	15.5	41.8	18.5
VI	351.4	224.6	216.7				
VII	360.2	223.7	216.9				

TABELLE 5

¹³C-NMR-SPEKTREN VON III, VIII UND IX IN CD_2Cl_2 (δ (ppm) bez. auf δ (CD_2Cl_2) 54.2 ppm)

	C _{Carbin}	со	<u>ک</u> مر	$\succ_{c_{1}}^{c_{1}}$	
m	337.3	207.9	37.0	14.1	
VIII	318.1	207.4			
IX	338.0	207.3			

Röntgenstrukturanalyse von trans-(µ-Bromo-pentacarbonylchrom)tetracarbonyl-(cyclopropylcarbin)chrom(V)

Um Aufschluss über den Molekülbau von V zu erhalten, wurde ein Kristall (ungefähre Grösse: $0.3 \times 0.35 \times 0.25$ mm) röntgenographisch untersucht. Die Zelldaten wurden auf einem Syntex P2₁-Vierkreisdiffraktometer (Mo- K_{α} , λ 71.069 pm, Graphit-Monochromator) bestimmt und insgesamt 2798 Reflexe ($2^{\circ} \leq 2\theta \leq 48^{\circ}$) gesammelt. Die wichtigsten Kristalldaten: Summenformel C₁₃H₅O₉Cr₂Br, Molekulargewicht 489.1, Raumgruppe $P\overline{1}$ (Z = 2), Zellkonstanten: a 864.7(4), b 925.4(5), c 1155.6(6) pm, α 89.30(4), β 106.58(4), γ 92.20(4)°, V 885.6 \times 10⁶ pm³, T –20°C Dichte (berechnet) 1.83 g cm⁻³,

TABELLE 6

DIE LAGE- UND TEMPERATURPARAMETER VON V (Für die Wasserstoffatome wurden konstante isotrope Temperaturfaktoren (B = 5.0) verwendet. Der anisotrope Temperaturfaktor T ist gegeben durch: $T = \exp[-1/4(h^2a^{*}2B_{11} + h^2b^{*}2B_{22} + l^2c^{*}2B_{43} + 2hka^{*}b^{*}B_{13} + 2hka^{*}c^{*}B_{13} + 2kkb^{*}c^{*}B_{23})]$; B_{ij} in 10⁴ pm²)

					C H -1 - 77	71~ 0		11	/
Atom	x/a	y/b	z/c	B ₁₁	B22	B33	Bış	B_{13}	B23
Br(1)	0.3923(2)	0,3802(1)	0.0849(1)	4,02(8)	2,94(7)	1.77(6)	-1,28(5)	0.36(5)	-0.04(5)
Cr(1)	0.3872(2)	0,2678(2)	0,2918(2)	2.4(1)	1,9(1)	1,8(1)	0,0(1)	0,4(1)	-0.2(1)
Cr(2)	0.2296(2)	0.2797(2)	-0.1228(2)	2.0(1)	2.0(1)	1.3(1)	-0,1(1)	0.3(1)	0.0(1)
C(1)	0.392(2)	0.194(2)	0,443(2)	2.1(7)	2.8(7)	5,8(9)	0,3(5)	0.0(6)	-2.8(7)
0(1)	0,399(2)	0.150(1)	0.533(1)	8,8(8)	6.3(7)	2.0(4)	0,2(5)	3,4(5)	2.1(4)
C(2)	0.551(2)	0.405(1)	0,368(1)	2,9(6)	2,8(6)	0.6(5)	0.2(5)	0.4(4)	0.3(4)
0(2)	0.649(1)	0.488(1)	0,416(1)	4,4(5)	3,9(5)	2.9(5)	-0.5(4)	0.8(4)	0.2(4)
C(3)	0.238(2)	0.406(2)	0.307(1)	3.1(8)	4.2(8)	4,0(8)	0,3(6)	0.7(8)	0.0(6)
0(3)	0.149(1)	0.490(1)	0.314(1)	4.0(6)	6.9(7)	5.3(6)	2.3(5)	0.1(5)	-1.7(5)
C(4)	0.216(2)	0.133(2)	0.229(1)	4.8(9)	4.1(8)	2.7(7)	-0.7(7)	1.3(6)	-0.2(6)
0(4)	0,109(1)	0.049(1)	0.188(1)	7.5(8)	6.6(7)	3.0(5)	3.7(6)	1.6(5)	-0.5(5)
C(6)	0.544(2)	0.138(1)	0.278(1)	4.8(8)	2.4(7)	2.2(6)	0.7(6)	0.5(6)	-1.2(5)
0(5)	0.647(1)	0.064(1)	0.272(1)	5.9(6)	3.4(5)	6,0(6)	2.3(5)	2.8(5)	0.1(4)
C(6)	0.264(2)	0.086(1)	-0.061(1)	3.0(7)	1.9(6)	3.6(7)	0.0(5)	1.0(5)	-0.2(5)
0(8)	0.286(1)	-0.028(1)	-0.017(1)	5,6(6)	2.9(5)	5,9(6)	0.4(4)	1.3(5)	0.4(5)
C(1)	0.036(2)	0.289(1)	-0.075(1)	2.9(7)	1.6(6)	4.3(7)	-0.7(5)	-0.1(6)	0.2(5)
0(1)	-0.080(1)	0.295(1)	-0.044(1)	3.2(6)	5.5(7)	10.8(9)	0.1(5)	3.5(6)	-1.0(6)
C(8)	0.432(2)	0.271(1)	-0.167(2)	2.9(7)	0.5(5)	7.4(10)	1.0(5)	-0.7(7)	0.5(6)
0(8)	0.542(1)	0.263(1)	-0.206(1)	2.9(5)	5.1(6)	4.6(5)	0.0(4)	1.7(4)	0.4(4)
C(8)	0,206(2)	0.482(2)	-0.173(1)	2.1(6)	3,5(8)	3.3(7)	-0.1(5)	0.0(5)	-1.8(6)
(6)0	0,189(1)	0,598(1)	-0.211(1)	4,5(6)	2.7(5)	4.5(5)	0.1(4)	1.3(4)	0.9(4)
C(10)	0.124(1)	0.216(1)	-0.263(1)	2.1(6)	2.2(6)	3.7(7)	0.2(5)	0.3(6)	-0.8(5)
C(11)	0.039(2)	0.157(1)	0.377(1)	3.5(7)	2,9(6)	0.7(5)	0.5(5)	0.0(5)	-0.7(4)
C(12)	-0.032(2)	0.257(2)	-0.481(1)	4.8(9)	4.4(8)	3.8(8)	0.1(7)	-0.8(7)	0.5(6)
C(13)	-0,140(2)	0.178(2)	-0.420(1)	3,8(8)	3.3(7)	3.7(7)	0.1(6)	-0.7(6)	-0.7(6)
H(11)	0,086	0.064	-0.374						•
H(121)	0.0 55	0.228	-0.575						
H(122)	-0.008	0.358	-0.470						
H(131)	-0.197	0.230	-0.372						
H(132)	-0,183	0,060	-0.445						

Br(1)-Cr(1)	260.6(2)		
Br(1)-Cr(2)	257.6(2)		
Cr(1)-C(1)	185.7(17)	C(1)O(1)	110.3(20)
Cr(1)-C(2)	189.2(13)	C(2)—O(2)	114.1(16)
Cr(1)-C(3)	189.6(16)	C(3)—O(3)	113.6(20)
Cr(1)—C(4)	188.5(16)	C(4)—O(4)	117.4(20)
Cr(1)-C(5)	188.9(15)	C(5)O(5)	115.5(19)
Cr(2)C(6)	192.1(13)	C(6)O(6)	116.7(17)
Cr(2)C(7)	190.7(16)	C(7)—O(7)	116.8(20)
Cr(2)C(8)	195.8(17)	C(8)—O(8)	117.0(20)
Cr(2)-C(9)	195.7(15)	C(9)—O(9)	115.4(18)
Cr(2)-C(10)	171.4(13)	C(10)C(11)	141.9(17)
C(11)-C(12)	151.0(20)	C(11)C(13)	150.3(21)
C(12)-C(13)	148.7(23)		
C+(1)	194 83(8)	$B_{r(1)} - C_{r(2)} - C(10)$	178.6(5)
$C_{1}(1) = B_{1}(1) = C_{1}(2)$	177 7(19)	Br(1) - Cr(1) - C(1)	177.1(5)
C(12) - C(10) - C(11)	60 2(10)	C(10) - C(11) - C(12)	119.3(12)
C(12) - C(12) - C(13)	60.2(10)	C(10) - C(11) - C(13)	117.3(11)
C(12)-C(11)-C(13)	59.1(10)		
₽+(1)	89 9(4)	B+(1)-C+(1)-C(2)	88.2(4)
$P_{1} = C_{1} = C_{1$	89.7(4)	Br(1) - Cr(1) - C(3)	90.0(5)
$B_{1} = C_{1} = C_{1} = C_{1}$	88 8(5)	Br(1) - Cr(1) - C(4)	96 3(5)
Br(1) - Cr(2) - C(9)	85.6(4)	Br(1)Cr(1)C(5)	88.8(4)
	• •		
Ebene C(11)-C(12)-C(1	36.7		
Ebene C(11)-C(12)-C(1	3)/Ebene Br(1)—Cr(3	2)C(10)C(9)C(6)	72.7
Torsionswinkel C(9)-Cr(2)/C(11)-C(12)		0.7
Torsionswinkel C(8)-Cr(2)/C(12)—C(13)		33.4

TABELLE 7 DIE WICHTIGSTEN ABSTÄNDE (in pm) UND WINKEL (in Grad) VON V

linearer Abs.-koeff. 37.1 cm⁻¹. Datenreduktion sowie die Lösung und Verfeinerung der Struktur wurden mit dem Syntex-XTL-System durchgeführt. Die Lage der Schweratome konnte mit MULTAN bestimmt werden, während die Lagen aller Leichtatome (einschliesslich Wasserstoffatome) anschliessenden Differenz-Fourier-Synthesen entnommen werden konnten. Die Verfeinerung der Lage- und Temperaturparameter der Atome (alle Atome ausser Wasserstoffatome wurden anisotrop verfeinert, die Wasserstoffatome blieben unverfeinert) führte nach der Methode der kleinsten Quadrate mit 2116 Strukturfaktoren zu den endgültigen *R*-Werten von R1 = 0.066 und R2 = 0.082 ($F_0 \ge 3.92\sigma(F_0)$). Tabelle 6 gibt die Lage- und Temperaturparameter von V an. Figur 1 zeigt die Geometrie von V und Tabelle 7 enthält die wichtigsten Abstände und Winkel.

Die Röntgenstrukturanalyse zeigte, dass das *trans*-Bromotetracarbonylchromcyclopropylcarbin-Fragment über das Bromatom mit dem Pentacarbonylchrom-Gerüst verknüpft ist. Die Bindungslängen der äquatorialen Carbonylgruppen des $(CO)_5$ Cr-Teiles sind mit 189.1 pm (gemittelt) nur geringfügig kürzer als in Cr(CO)₆ beobachtet (190.9 pm [6]). Die axiale Carbonylgruppe hingegen weist mit 185.7(17) pm eine starke Verkürzung auf. Übereinstimmend hiermit zeigt ein Vergleich der beiden Br-Cr-Bindungen, dass der Abstand des Bromatoms zum Chromatom des M(CO)₅-Gerüstes mit 260.2(2) pm signifikant länger als zum Chromatom des Carbinteiles mit 257.6(2) pm ist. In

Fig. 1. Die Geometrie von V.

unverbrückten Tetracarbonylcarbinkomplexen wurden Cr—Br-Abstände von 256.2 pm bis 257.7 pm beobachtet [7]. Die Abwinkelung Cr(1)—Br(1)—Cr(2) entspricht mit 124.8(1)° dem in Cr₂(CO)₁₀ Γ beobachteten Wert von 117.9(1)° [8]. Die Carbonylgruppen im Carbinteil zeigen die erwartete Aufweitung der Bindungslängen zum Chromatom von 193.6 pm (gemittelt), wobei die Carbonylgruppen leicht aus der ebenen Anordnung zum Halogenatom hingeneigt sind. Der Chrom—Carbinkohlenstoff-Abstand liegt mit 171.4(13) pm zwischen den für Alkyl- (168 pm [9]) und Aminocarbinkomplexen (174 pm [10]) beobachteten Werten. Dementsprechend ist auch der Carbinkohlenstoff—Cyclopropyl-kohlenstoff-Abstand mit 141.9(17) pm verkürzt. (Zum Vergleich: Abstand C_{Cyclopr}—R mit R = C₆H₅, CN in 1,1-Dichloro-2-2-diphenyl-cyclopropan 150.0 pm [11] und in 1,1,2,2-Tetracyanocyclopropan 144.6 pm [12]). Die Abweichung des M—C_{Carbin}—C_{Cyclopr}-Teiles aus der linearen Anordnung beträgt dabei 2.9°.

Die C-C-Bindungslängen des Cyclopropylrestes weisen im Rahmen der Standardabweichungen keine signifikanten Differenzen auf, doch ist zu erkennen, dass die endständige Bindung C(12)-C(13) mit 148.7(23) pm geringfügig gegenüber den beiden anderen Abständen C(11)-C(12) 151.0(20) pm und C(11)-C(13) 150.3(21) pm verkürzt ist. Diese Veränderung der Bindungslängen gegenüber denen des freien Cyclopropans mit 150.9 pm [13] entspricht dem für π -Akzeptor-Substituenten erwarteten Trend, d.h. Verkürzung der dem Substituenten gegenüberliegenden Bindung im Vergleich zu den benachbarten Bindungen [14]. Die Bindungsachse C(11)-C(12) liegt dabei in der untersuchten Verbindung V in der Ebene aus zwei äquatorialen Carbonylgruppen und der Br-Cr-C_{Carbin}-Achse, wobei die Cyclopropylgruppe mit dieser Ebene einen Winkel von 72.7° einschliesst.

Experimenteller Teil

Alle Arbeiten wurden unter Ausschluss von Luft und Feuchtigkeit in einer Stickstoffatmosphäre ausgeführt. Die IR-Spektren wurden an einem Perkin--Elmer 283B vermessen. Für die Aufnahme der ¹H-NMR-Spektren fand ein Jeol C60HL mit Tieftemperatureinrichtung Verwendung. Die Bestimmung der Schmelzpunkte eifolgte in abgeschmolzenen Kapillaren; die Werte sind unkorrigiert.

(1) Darstellung von I und II

Zu 35 mmol $M(CO)_6$, suspendiert in 200 ml Ether, gibt man bei 0°C unter Rühren eine Lösung von 35 mmol Cyclopropyllithium in Ether. Nach 2 h wird das Lösungsmittel bei Raumtemperatur entfernt. Das Lithiumacylmetallat löst man in 100 ml CH_2Cl_2 . Unter Eiskühlung und starkem Rühren werden 45 mmol $[Et_3O][BF_4]$ zugegeben. Nun engt man im Vakuum bis zur Trockene ein und extrahiert den Carbenkomplex mit Pentan. Die Pentanlösung wird über Kieselgel filtriert, auf 100 ml konzentriert und anschliessend auf -78°C abgekühlt. Es scheiden sich gelbe Kristalle ab, die im Hochvakuum getrocknet werden.

Ausbeute I: 5,3 g (61% bez. auf Cr(CO)₆); Fp.: 42° C Gef.: C, 45.69; H, 3.68; O, 33.04; Cr, 17.89. C₁₁H₁₀O₆Cr ber.: C, 45.51; H, 3.44; O, 33.10; Cr, 17.93%. Mol.-Masse 290.19.

Ausbeute II: 10.3 g (70% bez. auf W(CO)₆); Fp.: 48°C. Gef.: C, 31.64; H, 2.51; O, 22.74; W, 43.95. $C_{11}H_{10}O_5W$ ber.: C, 31.64; H, 2.36; O, 22.74; W, 43.60%. Mol.-Masse 422.04.

(2) Darstellung von III

3.2 g (12 mmol) I werden in 50 ml CH_2Cl_2 gelöst. Nach Abkühlen der Lösung auf $-25^{\circ}C$ tropft man 1.4 ml (14 mmol) BBr₃ zu und rührt 3 h bei dieser Temperatur. Anschliessend wird das Lösungsmittel abgezogen. Das Rohprodukt wird im Hochvakuum getrocknet, in 10 ml CH_2Cl_2 aufgenommen und bei $-50^{\circ}C$ an Kieselgel mit Pentan/ CH_2Cl_2 (1/1) chromatographiert. Das Eluat der dritten, hellorangefarbenen Zone engt man auf 10 ml ein. Beim Versetzen dieser Lösung mit Pentan von $-78^{\circ}C$ fällt III aus. Die Substanz wird mit Pentan gewaschen und bei $-40^{\circ}C$ 12 h im Hochvakuum getrocknet.

Ausbeute: 320 mg (10% bez. auf I), hellorangefarbene Nadeln Fp.: 36° C (Zers.). Gef.: C, 32.19; H, 1.76; O, 21.57; Br, 25.93; Cr, 17.28. C₈H₅O₄BrCr ber.: C, 32.32; H, 1.68; O, 21.54; Br, 26.93; Cr, 17.50%. Mol.-Masse 297.03.

(3) Darstellung von IV

Analog der Vorschrift zur Darstellung von III werden 4.2 g (10 mmol) II mit 1.1 ml (11 mmol) BBr₃ umgesetzt. Bei der Chromatographie wird die zweite, beige gefärbte Zone aufgefangen und auf 15 ml eingeengt. Versetzt man diese Lösung mit Pentan bei -78° C, so fällt IV aus. Die Substanz wird mehrmals mit Pentan gewaschen und bei -30° C im Hochvakuum getrocknet.

Ausbeute: 2.5 g (60% bez. auf II), beige Kristalle Fp.: 38°C. Gef.: C, 22.45; H, 1.20; O, 14.79; Br, 18.66; W, 43.19. $C_8H_5O_4BrW$ ber.: C, 22.38; H, 1.16; O, 14.92; Br, 18.65; W, 42.87%. Mol.-Masse 428.80.

(4) Darstellung von V

(a) 3.2 g I (12 mmol) werden in 50 ml CH₂Cl₂ gelöst. Nach Abkühlen der Lösung auf -25°C tropft man 1.4 ml BBr₃ (14 mmol) zu und rührt 3 h bei dieser Temperatur. Anschliessend wird das Lösungsmittel abgezogen. Das Rohprodukt wird im Hochvakuum getrocknet, in 10 ml CH₂Cl₂ gelöst und an einer kühlbaren Säule (-50°C) an Kieselgel mit Pentan/Methylenchlorid (1/1) chromatographiert. Die zweite, rote Zone wird aufgefangen, auf 30 ml eingeengt und auf -78°C abgekühlt. Es scheiden sich rote Kristalle ab, die bei -40°C 12 h im Hochvakuum getrocknet werden.

Ausbeute: 21 g (40% bez. auf I). Das Produkt zersetzt sich bei 52°C ohne zu schmelzen. Gef.: C, 31.97; H, 1.09; O, 29.16; Br, 15.50; Cr, 20.74, ber.: C, 31.93; H, 1.02; O, 29.43; Br, 16.34; Cr, 21.27%. Mol.-Masse 488.94.

(b) 300 mg (0.12 mmol) trans-Bromotetracarbonyl(cyclopropylcarbinchrom (III) werden in 2 ml CH_2Cl_2 bei $-30^{\circ}C$ gelöst und 4 ml Pentan zugeben. Die Lösung wird im Laufe von 3 Tagen von -30 auf $-78^{\circ}C$ abgekühlt. Dabei kristallisiert V in Form roter Kristalle aus.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg, für eine wertvolle Sachbeihilfe, der Alexander von Humboldt Stiftung für ein Stipendium für Frau N. Hoa Tran-Huy.

Literatur

- 1 N.Q. Dao, D. Neugebauer, H. Fevrier, E.O. Fischer, P.J. Becker und J. Pannetier, Inorg. Chem., eingesandt.
- 2 Houben-Weyl, Methoden der organischen Chemie, Bd. XIII/1 S. 142, 4. Aufl., Thieme Verlag Stuttgart, 1970.
- 3 J.B. Stothers, Carbon-13 NMR Spectroscopy, S. 161, Academic Press, New York und London, 1972.
- 4 C.G. Kreiter und V. Formacek, Angew. Chem., 84 (1972) 155; Angew. Chem. Int. Ed. Engl., 11 (1972) 141.
- 5 E.O. Fischer, G. Kreis, C.G. Kreiter, J. Müller, G. Huttner und H. Lorenz, Angew. Chem., 85 (1973) 618; Angew. Chem. Int. Ed. Engl., 12 (1973) 564; E.O. Fischer und U. Schubert, J. Organometal. Chem., 100 (1975) 59.
- 6 A. Whitaker und J.W. Jeffery, Acta Cryst., 23 (1967) 977.
- 7 D. Neugebauer, Dissertation, TU München, 1979, 81.
- 8 L.B. Handy, J.K. Ruff und L.F. Dahl, J. Am. Chem. Soc., 92 (1970) 7327.
- 9 G. Huttner, A. Frank und E.O. Fischer, Israel. J. Chem., 15 (1976/77) 133.
- 10 U. Schubert, D. Neugebauer, H. Fischer, A. Motsch, P. Hofmann und B.E.R. Schilling, Chem. Ber., 114 (1981) 3349.
- 11 J.W. Lauher und J.A. Ibers, J. Am. Chem. Soc., 97 (1975) 561.
- 12 J.T. Lemley, P.M. Skarstadt und R.E. Hughes, Acta Cryst. B, 32 (1976) 35.
- 13 O. Bastiansen, F.N. Fritsch und K. Hedberg, Acta Cryst., 17 (1964) 538.
- 14 (a) R. Hoffmann, Tetrahedron Lett., (1970) 2907; (b) H. Günther, ibid., (1970) 5173; (c) R. Hoffmann und W.-D. Stohrer, J. Am. Chem. Soc., 93 (1971) 6941; (d) F.H. Allen, Acta Cryst. B, 36 (1980) 81.